

© 2022 Doodle Labs. All rights reserved.
1

Remote Management Guide for Smart Radio

Remote Management Guide for Smart Radio

Advanced Mesh Router for Private Wireless Networks

Introduction

The Smart Radio runs the Mesh Rider OS. It is a customized version of Openwrt with

enhancements useful for applications requiring low-latency command-and-control transmission

and high-throughput video - e.g. UAV and robotics.

The purpose of this guide is to aide a user in remotely configuring Smart Radio settings. There

are three primary ways to configure the Smart Radio. All of these interfaces can be accessed

either locally (over Ethernet/USB) or remotely (over the wireless link).

1. The Web GUI

2. SSH

3. The JSON-RPC API

4. MQTT

Each of these interfaces serves a different purpose. The Web GUI is designed for initial

configuration. For example, when you first start using the device, during bench testing.

SSH access is enabled for advanced system configuration and status monitoring. It provides root

access to the underlying Linux system and is a very powerful way to access the system. Typically,

equipment manufacturers should not allow SSH access to the end users of the radios. SSH can

be very fast when using multiplexing.

The JSON-RPC API is designed for integration into customer software. As with SSH access, it

potentially provides complete access to the underlying Linux system, however access

permissions can also be tailored to the equipment manufacturer’s requirements so that end-

users cannot access the nuts and bolts of the radios system.

MQTT is an alternative to the JSON-RPC API which is ubiquitous in IoT applications. Only user-

defined messages can be sent using MQTT. MQTT can be very fast if encryption is turned off.

A summary of the differences between the command-line APIs is shown in Table 1.

© 2022 Doodle Labs. All rights reserved.
2

Remote Management Guide for Smart Radio

Table 1 – Comparison of Smart Radio APIs

 SSH JSON-RPC MQTT

Network Model P2P, Client-server P2P, Client-server Centrally Managed

Primary Usage Debugging Software Integration IoT, simple

messaging

Access Full User-Defined User-Defined

Command Set All ubus only User-defined

messaging

Security Required Required Optional

Latency Fast with

multiplexing (10s of

milliseconds)

Slow due to TLS (~2s) - Slow with TLS (~2s)

- Fast without (10s of

milliseconds)

End users will typically never use any of these APIs directly. In fact, they should not even have

the password to access the radios. Instead, they use application software such as ground-

control-station (GCS) software which uses the JSON-RPC API to talk to the radio and relay

information to the user.

The remainder of the main content of this document discusses how to run commands in the CLI.

Detailed information on how to use each particular interface is discussed in the following

Appendices

1. Appendix A – The Web GUI

2. Appendix B – SSH

3. Appendix C – The JSON RPC API

4. Appendix D – MQTT

5. Appendix E – Common CLI Commands

6. Appendix F – Creating a Bootup Script

The Smart Radio includes a Central Configuration utility and a Link Status Log utility which are

discussed below. Read the “Running Commands in the CLI” section for details.

Central Configuration

The Central Configuration utility is designed to quickly modify the operating channel, TX power,

and distance setting, and to poll status information from the entire network of radios. After

© 2022 Doodle Labs. All rights reserved.
3

Remote Management Guide for Smart Radio

enabling Central Config in the GUI, it is possible to perform Central Config tasks over the SSH

and JSON-RPC APIs. See the Central-Config section under “Using the JSON-RPC API”, and MQTT
section in Appendix A for details. As each radio uses the Central Config utility to send its own

link information to the primary node, the central configuration utility is a good way to get

limited network-wide status information.

Link Status Log

The Link Status Log utility is designed to log the radio’s link status over time. It keeps much more

detailed information that the Central Configuration utility, but each node operates separately

and does not share information with other nodes. Aside from downloading the logs, you can

also get the latest status from any particular node.

Running Commands in the CLI

If you login to the Smart Radio’s Linux Ash shell (similar to Bash) using SSH, you can run Linux

commands. Some commonly used commands are summarized in Appendix E. It will also help if

you are familiar with UBUS, Doodle Labs’ Central Configuration utility, or Doodle Labs’ Link Log
utility.

UBUS

Calls to the JSON-RPC API go through the Openwrt ubus system [2]. Before going into the JSON-

RPC API, you should become familiar with ubus. In order to run ubus directly, first SSH into the

radio. You can view a list of available ubus commands using (result abridged)

root@smartradio:~# ubus list

central-config

dhcp

dnsmasq

file

iwinfo

…

Note that the central-config call is only available after enabling the Central Configuration utility.

You can get information about how to use specific ubus calls by running

root@smartradio:~# ubus -v list <CALL>

For example,

root@smartradio:~# ubus -v list iwinfo

© 2022 Doodle Labs. All rights reserved.
4

Remote Management Guide for Smart Radio

'iwinfo' @68374f72

 "devices":{}

 "info":{"device":"String"}

 "scan":{"device":"String"}

 "assoclist":{"device":"String","mac":"String"}

 "freqlist":{"device":"String"}

 "txpowerlist":{"device":"String"}

 "countrylist":{"device":"String"}

 "survey":{"device":"String"}

 "phyname":{"section":"String"}

An example of how to use the iwinfo call is shown below. We replaced “String” with

“wlan0” (result abridged).

root@smartradio~# ubus call iwinfo assoclist '{"device":"wlan0"}'

{

 "results": [

 {

 "mac": "00:30:1A:4E:BB:09",

 "signal": -47,

…

We can filter these results using the jsonfilter utility. Note in the JSON file above that the

results property is an array of values, one for each connected station.

root@smartradio:~# ubus call iwinfo assoclist '{"device":"wlan0"}' |

jsonfilter -e '@.results[1].mac' -e '@.results[1].signal'

00:30:1A:4E:BB:01

-62

Or if you know the MAC address of the device you want to filter, you can use

root@smartradio:~# ubus call iwinfo assoclist '{"device":"wlan0"}' |

jsonfilter -e '@.results[@.mac="00:30:1A:4E:BB:01"].signal'

-62

In general, however, we recommend parsing data on your local machine where it should be

easier.

Central Config

If you have gained some familiarity with ubus, you can run Central Config commands over ubus.

You can use Central Config to either send configuration changes to the entire network or get

status information from each node in the network. You will need to enable Central Config in the

GUI first. Navigate to Services → Central Config in the GUI to enable the service. Fig. 1

© 2022 Doodle Labs. All rights reserved.
5

Remote Management Guide for Smart Radio

shows the Central Config configuration page. Note that one node should be elected as the

primary node, and all other nodes need to put the primary node’s IP address in the Address bar.
The Central Config utility uses TLS PSK for security, and it can be configured in the second tab.

Fig. 1 Central Config configuration page

Currently only three parameters are implemented over Central Config: the operating channel,

the distance setting (in meters), and the TX power level (in dBm). Additional options may be

added in future. These settings are controlled by the ubus Central Config properties “channel”,
“distance”, and “txpower”. For example, to change the operating channel, run

root@smartradio:~ # ubus call central-config config

{"dest":"all","delay":0,"config":{"channel":"51"}}'

This tells all devices in the network to switch to channel 51. If you run “iw wlan0 info” after
running the above command, you should see that the radios have moved to the new channel

(make sure it is a valid channel first).

• The “delay” property can be used to delay the execution of the call (in seconds).
• The property “dest” can be either “all”, “primary”, or a specific MAC address.
• The property “config” is actually a generic property in JSON format. When a node

receives a new message, it executes all scripts in the folder

“/usr/lib/doodlelabs/central-config”. It is up to those scripts to parse the
json data and perform actions based on the received data.

To get a status update over Central Config, run the command

© 2022 Doodle Labs. All rights reserved.
6

Remote Management Guide for Smart Radio

root@smartradio:~ # ubus call central-config config

{"dest":"all","delay":0,"apply":"true","config":{"request_status":"1"}}

'

You will not see an output, but each radio defined by “dest” will send a status update which
will be appended to “/tmp/status.json”. This file grows each time a new status update is
received. We can once again use the jsonfilter utility to parse the /tmp/status.json file.

For example, to get a list of MAC addresses, run

root@smartradio:~# jsonfilter -i /tmp/status.json -a -e '@[*].mac' |

sort -u

00:30:1A:4E:AA:01

00:30:1A:4E:AA:02

00:30:1A:4E:AA:09

• -i : file input

• -a : because the file is a stack of several JSON strings, this switch treats the file as an

array

• -e : filter pattern

• sort -u : remove duplicates

To get the latest status update from a particular MAC address, run

root@smartradio:~# jsonfilter -i /tmp/status.json -a -e

'@[@.mac="00:30:1A:4E:AA:01"]' | tail -n1

{

 "mac": "00:30:1A:4E:AA:01",

 "hostname": "smartradio-301a4ebb01",

 "model": "RM-2250-2J-X",

 "Interfaces": [

 {

 "wlan0": {

 "mac": "00:30:1A:4E:BB:01",

 "associations": [

 {

 "mac": "00:30:1A:4E:BB:09",

 "signal": -52,

 "inactive": 0,

 "tx_mcs": 65000,

 "rx_mcs": 58500,

 "tx_packets": 368820,

 "rx_packets": 1069144

 },

 {

 "mac": "00:30:1A:4E:BB:02",

© 2022 Doodle Labs. All rights reserved.
7

Remote Management Guide for Smart Radio

 "signal": -59,

 "inactive": 0,

 "tx_mcs": 65000,

 "rx_mcs": 58500,

 "tx_packets": 368938,

 "rx_packets": 1063279

 }

],

 "Batman_originator": [

 {

 "best": "true",

 "orig_address": "00:30:1a:4e:bb:02",

 "last_seen_msecs": 90,

 "tq": 239

 },

 {

 "best": "true",

 "orig_address": "00:30:1a:4e:bb:09",

 "last_seen_msecs": 60,

 "tq": 246

 }

]

 }

 }

],

 "phy0": {

 "aqm_backlog": 0

 }

}

• @[] : print only the array element defined in the square braces

• @.mac=”00:30:1A:4E:AA:01” : filter the array element with this matching MAC

address

When first using this API, we recommend copying the file to your local machine, and parsing the

data using “jq” [3], which will make the output human readable. If we want to get an array of
MAC addresses, and corresponding RSSI, we need to run the command

root@smartradio:~# jsonfilter -i /tmp/status.json -a -e

'@[@.mac="00:30:1A:4E:AA:01"]' | tail -n1 | jsonfilter -e

'@.Interfaces[0].wlan0.associations.results[*].signal' -e

'@.Interfaces[0].wlan0.associations.results[*].mac'

-63

-54

00:30:1A:4E:BB:02

00:30:1A:4E:BB:09

© 2022 Doodle Labs. All rights reserved.
8

Remote Management Guide for Smart Radio

We could also run this command twice, once to get the MAC addresses, and the second time to

get the RSSI. However, in most cases, it makes more sense to parse the json file on your local

machine rather than in the Smart Radio.

Link Status Log Utility

The Link Log utility was introduced in the October 2022 firmware release. Each device

independently maintains a log of the link status information. The Link Log utility can be

configured at Services → Link Status Log. Fig. 2 shows the configuration page. The logs

are accessible in the shell in the folder /tmp/longtermlog. Alternatively, you can download

the logs from the web GUI. The contents of the Link Log utility are shown here,

root@smartradio:/tmp/longtermlog# ls

22-05-05_13-26-21.log 22-05-05_13-51-09.log 22-05-05_14-14-34.log

ipv6list stationlist status.json

The log files are limited to 500 lines, and the file name is the date when the log started. Aside

from long term logs, the Link Log utility keeps the latest status line in the file

/tmp/longtermlog/status.json. The output of each line is,

{

 "date": "22-05-05_16:29:49",

 "ipv6list": [

 {

 "ip6address": "fe80::230:1aff:fe4f:960f",

 "rtt": "1.631"

 }

],

 "stationlist": [

 {

 "station": "00:30:1A:4F:96:0E",

 "iwseen": "50",

 "RSSI": "-54,-58,-57",

 "RATE": "MCS15,100.0",

 "packet_drop": "backlog,0,drops,0,collisions,0,packets,134390",

 "peer_rssi": "-55",

 "peer_power": "17",

 "reply_rssi": "-55",

 "reply_power": "21",

 "fixed_txpower": "255",

 "next_hop": "direct",

 "batseen": "0.090"

 }

],

© 2022 Doodle Labs. All rights reserved.
9

Remote Management Guide for Smart Radio

 "wirelessStats": {

 "noise": -95.414276,

 "act_s": 34.1,

 "bus_s": 0.23,

 "RX_kb": 1246,

 "TX_kb": 770,

 "usrrst": 1925,

 "Fatal": 0,

 "TXPath": 0,

 "bbhang": 0,

 "deafhang": 0,

 "backlog": 0

 }

}

The output is in JSON format with the following sections. Some options may not be enabled by

default in the GUI.

• Time stamp. This is the time stamp for the information set.

• Ipv6 station list. This section shows the Ipv6 address of each connected station, and the

round-trip time to that station.

• MAC list. This section shows layer 2 connectivity information to all nodes in the

network.

o iwseen: time in milliseconds since a packet was received by the wireless

interface.

o RSSI: RSSI of the packets received from that station in the format “total,
antenna0, antenna1”.

o RATE: MCS rate and packet success rate for packets sent to that station.

o packet_drop: detailed information about packets sent to that station

o peer_rssi: TPC-related utility – rssi from a particular station

o peer_power: TPC-related utility – power to a particular station

o reply_rssi: TPC-related utility – rssi recorded by a particular station from the

current node

o reply_power: TPC-related utility – power set by a particular station to the

current node

o fixed_txpower: TPC-related utility – power factor

o next_hop: In mesh mode, whether the station is directly connected.

o batseen: time in seconds since the last packet was received by the mesh

interface. Similar to “iwseen”

• Wireless Statistics

o noise: level of the background noise in dBm

o act_s: active time in seconds since the last time-stamp

© 2022 Doodle Labs. All rights reserved.
10

Remote Management Guide for Smart Radio

o bus_s: the amount of time the wireless medium was in use by any station in

seconds. The medium usage duty cycle is bus_s/act_s.

o RX_kb: amount of data received in kilobits since the last time-stamp.

o TX_kb: amount of data transmitted by this node in kilbits since the last time-

stamp.

o The remaining fields are driver related and should be diagnosed by Doodle Labs

technicians if required.

Fig. 2 Link Status Log

© 2022 Doodle Labs. All rights reserved.
11

Remote Management Guide for Smart Radio

Appendix A – The Web GUI

The Web GUI can be accessed in any web browser at https://<IP ADDRESS> (port 443).

Note that the web browser uses a self-signed certificate. This means that connection to the web

browser is encrypted, but not authenticated. The first time you access the Smart Radio from a

new browser, you will get a SSL certificate warning. It is okay to ignore the warning and proceed.

Please see the online Configuration Guide for details on using the Web GUI [1].

© 2022 Doodle Labs. All rights reserved.
12

Remote Management Guide for Smart Radio

Appendix B –SSH

SSH or Secure Shell is a way to securely login to the Smart Radio. The easiest way to do so is to

open up a command prompt (Windows) or terminal (Linux), and type

ssh root@<IP ADDRESS>

Where <IP ADDRESS> is the IP address of the Smart Radio. There are numerous configuration

options that your SSH client supports, such as public key authentication, and quiet output and

you are encouraged to research them.

Note that your SSH client keeps a list of known hosts, and after a firmware upgrade, you may

need to remove the Smart Radio from the known hosts list. You can do so by running

ssh-keygen -R <IP ADDRESS>

Sending Remote Commands

You can remotely execute a command via SSH to obtain network information from the node. For

example,

ssh root@<IP ADDRESS> “iw wlan0 info”
Interface wlan0

 ifindex 13

 wdev 0x7

 addr 00:30:1a:4e:86:46

 type mesh point

 wiphy 0

 channel 12 (915 MHz), width: 20 MHz, center1: 915 MHz

 txpower 32.00 dBm

Speeding up the Connection

If your SSH client supports Multiplexing (OpenSSH for example), then it is a good way to improve

the connection speed. Multiplexing allows you to send multiple commands over a single SSH

connection. Information about the setup can be found here:

https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multiplexing

As an example, modify your SSH config file (usually ~/.ssh/config) with the following settings

Host *

 IdentitiesOnly yes

https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Multiplexing

© 2022 Doodle Labs. All rights reserved.
13

Remote Management Guide for Smart Radio

 ControlPersist yes

 COntrolMaster auto

 ControlPath ~/.ssh/%r@%h:%p

Create the file if it doesn’t exist.

mailto:~/.ssh/%25r@%25h:%25p

© 2022 Doodle Labs. All rights reserved.
14

Remote Management Guide for Smart Radio

Appendix C – The JSON-RPC API

The JSON-RPC API is normally preferred when integrating radio access into custom software. In

order to enable the JSON-RPC API, navigate to

https://<IP ADDRESS>/cgi-bin/luci/admin/services/rpcd

in your web browser. Fig. 2 shows the JSON-RPC API web configuration page.

Fig. 2 – JSON RPC API Configuration Page

Click Add to configure the API. Choosing Restricted Access opens up the API for a limited set of

commands which we will detail later. You can also choose Full Access which allows unrestricted

access to the Linux filesystem, and Custom Access, if you know how to customize the JSON RPC

API. We recommend choosing Restricted Access if you are not sure.

Using the JSON-RPC API

To use API, you need to get a session ID and use it for subsequent requests. For example, you

can try the following call,

USER=myusername

PASS=mypassword

curl -k https://<IP-ADDRESS>/ubus -d '

{

 "jsonrpc": "2.0",

© 2022 Doodle Labs. All rights reserved.
15

Remote Management Guide for Smart Radio

 "id": 1,

 "method": "call",

 "params": ["00000000000000000000000000000000", "session", "login", {

"username": '\"$USER\"', "password": '\"$PASS\"' }]

}'

the -k option is required because the Smart Radio doesn’t use a third party certificate authority.
An example of using JSON-RPC API for file access is shown below. Substitute <TOKEN> with the

value returned above.

TOKEN=$1

curl -k https://<IP-ADDRESS>/ubus -d '

{

 "jsonrpc": "2.0",

 "id": 1,

 "method": "call",

 "params": ['\"$TOKEN\"', "file", "read", { "path":

"/tmp/status.json" }]

}'

We recommend parsing data on your local machine rather than trying to parse it on the Smart

Radio.

Using the JSON-RPC API requires knowledge of UBUS. Please read the section Running

Commands in the CLI for more information.

© 2022 Doodle Labs. All rights reserved.
16

Remote Management Guide for Smart Radio

Appendix D –MQTT

The Smart Radio has supported MQTT broker and client protocols since the February 2022

firmware release. MQTT uses a publish/subscribe model. Clients can publish messages to a

topic, and all clients which are subscribed to that topic will receive the message. All

communications are handled by a central broker.

Fig. 1 – MQTT publish/subscribe model

The Smart Radio uses MQTT for it’s Central Config utility, so the easiest way to start a broker is
to simply set one of the radios as the primary node in the Central Config configuration page.

Navigate to Services → Central Config in the GUI and use the setup below.

Fig. 2 – Central Config setup

This radio will now run an MQTT broker. You can modify the security settings on the broker in

the security tab. You can check that the broker is running by logging into the radio over SSH and

running the following command

ssh root@<host IP>

© 2022 Doodle Labs. All rights reserved.
17

Remote Management Guide for Smart Radio

ps w | grep mosquitto | grep -v grep

You can test out the following pub/sub commands from the Smart Radio itself.

Subscribe to the topic “mytopic”

mosquitto_sub -h <BROKER IP> -p 8883 -t "mytopic" --psk

"0123456789abcdef" --psk-identity "doodlelabs"

Publish a message to the topic “mytopic”

mosquitto_pub -h <BROKER IP> -p 8883 -t "mytopic" --psk

"0123456789abcdef" --psk-identity "doodlelabs" -m 'Hello'

For details on common CLI commands, see Appendix E. If you want to create program that starts

automatically on boot, see Appendix F.

Speeding up MQTT

The speed at which MQTT can send commands is limited by the TLS handshaking required for

every message sent. You can also run an MQTT broker without TLS security by simply running

mosquitto

over the CLI. You can also create a start-up script to do this automatically on boot (Appendix F).

The insecure MQTT broker listens on port 1883, so you will need to open the firewall on port

1883 for the broker to receive messages. With TLS disabled, the mosquitto_pub/sub commands

are the same except the --psk and --psk-identity arguments are not required.

© 2022 Doodle Labs. All rights reserved.
18

Remote Management Guide for Smart Radio

Appendix E – Common CLI Commands

This section provides commands commonly used in the Smart Radio for configuration and

diagnostics.

UCI

The UCI system is used for configuration. Most UCI files are found at /etc/config/. This is a

slow method of configuration, but changes are saved over a reboot. After committing changes,

it is necessary to restart the relevant service (see the section below).

Command Example Output Purpose

uci show Too long Shows the full UCI configuration including all

sections

uci show wireless wireless.radio0=wifi-device
wireless.radio0.type='mac80211'
wireless.radio0.hwmode='11g'
wireless.radio0.path='platform/qca953
x_wmac'
wireless.radio0.htmode='HT20'
wireless.radio0.fes_disabled='0'
wireless.radio0.rxantenna='1 2'
wireless.radio0.txantenna='1 2'
wireless.radio0.channel='7'
wireless.radio0.chanbw='15'
wireless.radio0.disabled='0'
wireless.radio0.legacy_rates='0'
wireless.radio0.distance='4000'
wireless.wifi0=wifi-iface
wireless.wifi0.device='radio0'
wireless.wifi0.mode='mesh'
wireless.wifi0.network='mesh_dev'
wireless.wifi0.mesh_id='simpleconfig'
wireless.wifi0.mesh_fwding='0'
wireless.wifi0.mesh_nolearn='1'
wireless.wifi0.mesh_ttl='1'
wireless.wifi0.mcast_rate='12000'
wireless.wifi0.encryption='psk2+ccmp'
wireless.wifi0.key='DoodleSmartRadio'

Shows the wireless configuration. You can

further filter the output with “uci show
wireless.radio0” for example.

uci set
wireless.radio.chanbw=5

NONE Sets the channel bandwidth to 5 MHz

uci set
wireless.radio0.txanten
na=’1’

NONE Sets the transmit antenna to Antenna 0

ONLY

uci commit NONE Saves changes. You can save individual

sections too. For example “uci commit
wireless”. After committing changes, you
need to restart the service.

© 2022 Doodle Labs. All rights reserved.
19

Remote Management Guide for Smart Radio

Restarting a service

After making configuration changes, restart the relevant service.

Command Example Output Purpose

ls /etc/init.d RUN COMMAND See a list of services to enable, restart, stop

etc.

/etc/init.d/network restart

Available commands:

restart/start/stop/enable/disable/reload

NONE Restarts the networking. Required after

making changes to the network, like IP

addressing. This will also restart other

networking services like the firewall, dhcp,

and the wireless interfaces.

wifi NONE Restarts the wireless interfaces

/etc/init.d/firewall restart NONE Restarts the firewall. Required after making

changes to the firewall, like opening a

network port.

reboot NONE Reboots the radio

Real-Time Configuration

The commands below work on-the-fly, but do not survive a network restart or reboot.

Command Example Output Purpose

iw wlan0 set txpower fixed
2000

NONE Sets the TX power to 20 dBm. Note that the power is

measured in millibels, so divide by 100 to get decibels.

iw wlan0 set txpower auto NONE Sets the TX power to auto (highest power)

iw wlan0 set bitrates ht-
mcs-2.4 <RATE>

NONE Fixes the bitrate. <RATE> is the MCS rate between 0 and 15

where 0-7 are single-stream rates, and 8-15 are dual-

stream rates.

iw wlan0 set bitrates NONE Sets the MCS rate to auto

iw dev wlan0 mesh chswitch
<CHANNEL> <# BEACONS>

NONE Sends a channel switch announcement to all MESH nodes

to switch to <CHANNEL> after sending <# BEACONS>

beacons. CURRENTLY BUGGED (August 2021) and only the

local radio will switch frequency.

hostapd_cli chan_switch <#
BEACONS> <FREQ> ht

Selected
interface
'wlan0'

OK

Sends a channel switch announcement to all WDS Client

nodes to switch to <FREQ> after sending <# BEACONS>

beacons.

© 2022 Doodle Labs. All rights reserved.
20

Remote Management Guide for Smart Radio

Getting Connection Information
Command Example Output Purpose

iw wlan0 station
dump

OR

iw wlan0 station
get <MAC>

Station 00:30:1a:4e:bb:26 (on wlan0)
 inactive time: 70 ms
 rx bytes: 2009144
 rx packets: 18003
 tx bytes: 91052
 tx packets: 404
 tx retries: 81
 tx failed: 0
 rx drop misc: 47
 signal: -45 [-46, -49] dBm
 signal avg: -45 [-46, -50] dBm
 Toffset: 69680156242 us
 tx bitrate: 58.5 MBit/s MCS 6
 rx bitrate: 52.0 MBit/s MCS 11
…

Gets information about all

connected stations or an

individual station.

Expected throughput is not

accurate.

iw wlan0 station
get <MAC> | grep
“inactive time”

inactive time: 70 ms

Shows how long it has been

since a station was last seen

iw wlan0 station
get <MAC> | grep
“signal: ”

signal: -45 [-46, -49] dBm

Shows the RSSI for a particular

station

iwinfo wlan0
assoclist

00:30:1A:4E:F3:00 -36 dBm / -95 dBm (SNR
59) 90 ms ago
 RX: 29.2 MBit/s, MCS 4, 15MHz
34646 Pkts.
 TX: 39.0 MBit/s, MCS 11, 15MHz
510 Pkts.
 expected throughput: 27.3 MBit/s

00:30:1A:4E:BB:25 -51 dBm / -95 dBm (SNR
44) 100 ms ago
 RX: 87.7 MBit/s, MCS 14, 15MHz
32927 Pkts.
 TX: 39.0 MBit/s, MCS 5, 15MHz
796 Pkts.
 expected throughput: 27.3 MBit/s

Information on all associated

stations

iw wlan0 info

Interface wlan0
 ifindex 24
 wdev 0x3
 addr 00:30:1a:4e:bb:09
 type mesh point
 wiphy 0
 channel 7 (2442 MHz), width: 15
MHz, center1: 2442 MHz
 txpower 36.00 dBm
…

Get information about the

current wireless settings

iw wlan0 survey
dump

…
Survey data from wlan0
 frequency:
2442 MHz [in use]
 noise: -
95 dBm
 channel active time:
52516424 ms
 channel busy time:
11001429 ms
 channel receive time:
8834551 ms
 channel transmit time:
388874 ms

Get channel usage statistics

© 2022 Doodle Labs. All rights reserved.
21

Remote Management Guide for Smart Radio

…

batctl

RUN APPLICATION

See a list of commands for mesh

interface information and

configuration

batctl o

[B.A.T.M.A.N. adv 2021.0-openwrt-1,
MainIF/MAC: wlan0/00:30:1a:4e:bb:09
(bat0/8a:0a:22:0a:2e:58 BATMAN_IV)]
 Originator last-seen (#/255)
Nexthop [outgoingIF]
 00:30:1a:4e:f3:00 0.000s (187)
00:30:1a:4e:bb:27 [wlan0]
 00:30:1a:4e:f3:00 0.000s (178)
00:30:1a:4e:bb:0a [wlan0]
 * 00:30:1a:4e:f3:00 0.000s (243)
00:30:1a:4e:f3:00 [wlan0]
 00:30:1a:4e:bb:0a 0.000s (184)
00:30:1a:4e:bb:27 [wlan0]
 00:30:1a:4e:bb:0a 0.000s (184)
00:30:1a:4e:f3:00 [wlan0]
 * 00:30:1a:4e:bb:0a 0.000s (243)
00:30:1a:4e:bb:0a [wlan0]
 * 00:30:1a:4e:bb:27 0.080s (253)
00:30:1a:4e:bb:27 [wlan0]
 00:30:1a:4e:bb:27 0.080s (184)
00:30:1a:4e:bb:0a [wlan0]
 00:30:1a:4e:bb:27 0.080s (180)
00:30:1a:4e:f3:00 [wlan0]

See information about

connected mesh nodes

including preferred hop (*), last-

seen time, transmit quality

(#/255)…

Networking Information
Command Example Output Purpose
ifconfig br-wan br-wan Link encap:Ethernet HWaddr

00:30:1A:4E:AA:09
 inet addr:10.223.187.9
Bcast:10.223.255.255 Mask:255.255.0.0
 inet6 addr:
fe80::230:1aff:fe4e:aa09/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST
MTU:1500 Metric:1
 RX packets:113310 errors:0
dropped:0 overruns:0 frame:0
 TX packets:105496 errors:0
dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:36813834 (35.1 MiB) TX
bytes:28067314 (26.7 MiB)

Show information about

the WAN bridge

route -n Kernel IP routing table
Destination Gateway Genmask
Flags Metric Ref Use Iface
10.223.0.0 0.0.0.0
255.255.0.0 U 0 0 0
br-wan
192.168.1.0 0.0.0.0
255.255.255.0 U 0 0 0
eth1
192.168.153.0 0.0.0.0
255.255.255.0 U 0 0 0
br-wan

Show the routing table

netstat -tuapn …
tcp 0 0 10.223.187.9:22
10.223.0.90:65297 ESTABLISHED
26182/dropbear

Show socket connection

information

© 2022 Doodle Labs. All rights reserved.
22

Remote Management Guide for Smart Radio

…
arp IP address HW type Flags

HW address Mask Device
10.223.0.90 0x1 0x2
b0:25:aa:2d:d3:8e * br-wan
10.223.187.6 0x1 0x0
00:00:00:00:00:00 * br-wan

Show the address

resolution protocol table.

ip a …
5: br-wan:
<BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc noqueue state UP group default qlen
1000
 link/ether 00:30:1a:4e:aa:09 brd
ff:ff:ff:ff:ff:ff
 inet 10.223.187.9/16 brd
10.223.255.255 scope global br-wan
 valid_lft forever preferred_lft
forever
 inet 192.168.153.1/24 brd
192.168.153.255 scope global br-wan
 valid_lft forever preferred_lft
forever
 inet6 fe80::230:1aff:fe4e:aa09/64
scope link
 valid_lft forever preferred_lft
forever
…

Show information about IP

addresses

fw3 print …
iptables -t filter -A zone_wan_input -p
udp -m udp --dport 2000 -m comment --
comment "!fw3: Allow-Socat" -j ACCEPT
iptables -t filter -A zone_wan_input -p
tcp -m tcp --dport 2000 -m comment --
comment "!fw3: Allow-Socat" -j ACCEPT
…

fw3 is a front end to

iptables and can be used

to configure the firewall.

cat
/proc/net/nf_conntrack

…
ipv4 2 tcp 6 7439 ESTABLISHED
src=10.223.0.90 dst=10.223.187.9
sport=65297 dport=22 packets=767
bytes=54829 src=10.223.187.9
dst=10.223.0.90 sport=22 dport=65297
packets=640 bytes=107146 [ASSURED] mark=0
use=2
…

See exiting network

connections

bmon -b

OR

bmon -b -p wlan0

RUN APPLICATION Network usage

information

© 2022 Doodle Labs. All rights reserved.
23

Remote Management Guide for Smart Radio

System Information
Command Example Output Purpose

dmesg

…
[39.776169] batman_adv: bat0: IGMP
Querier appeared
[39.776180] batman_adv: bat0: MLD
Querier appeared
[40.781438] IPv6:
ADDRCONF(NETDEV_CHANGE): wlan0: link
becomes ready
[41.215540] batman_adv: bat0: Adding
interface: wlan0
[41.215567] batman_adv: bat0: Interface
activated: wlan0

See kernel messages

cat
/var/log/messages

OR

logread

…
Sat Feb 27 19:25:19 2021 daemon.warn
dnsmasq-dhcp[2133]: no address range
available for DHCP request via br-wan
…

See logger messages

top

RUN APPLICATION

Check processor load

free

 total used free
shared buff/cache available
Mem: 59436 19244 19492
952 20700 18288

Check memory usage

© 2022 Doodle Labs. All rights reserved.
24

Remote Management Guide for Smart Radio

Appendix F – Creating a Bootup Script

The Smart Radio uses Openwrt’s procd system for init scripts [4].

Example

We will create a simple script to echo a message to the system logs every 5 seconds. Save the

following listing as /usr/bin/my_startup_script.sh

#!/bin/sh

while (sleep 5) do

 logger -t "My Message" "Hello"

done

You now have to make the script executable. Run

chmod +x /usr/bin/my_startup_script.sh

You can use the following basic listing for a startup script. Save the file in your Smart Radio as

/etc/init.d/my_init_script.

#!/bin/sh /etc/rc.common

USE_PROCD=1

START=99

PROG="/usr/bin/my_startup_script.sh"

start_service() {

 procd_open_instance

 procd_set_param command $PROG -p $PORT

 procd_set_param respawn 0 5 0

 procd_close_instance

}

After creating the file, make it executable, and then enable and start the init script.

chmod +x /etc/init.d/my_init_script

/etc/init.d/my_init_script enable

/etc/init.d/my_init_script start

You can also follow the system log messages from my_startup_script.sh by running

logread -f "My Message"

© 2022 Doodle Labs. All rights reserved.
25

Remote Management Guide for Smart Radio

References

[1] Doodle Labs Knowledge Base,

https://doodlelabstechsupport.zohodesk.com/portal/en/kb/doodle-labs, Sept 2022

[2] Openwrt UBUS, https://openwrt.org/docs/techref/ubus, Sept 2022

[3] jq, https://stedolan.github.io/jq/, Sept 2022

[4] Openwrt procd, https://openwrt.org/docs/guide-developer/procd-init-script-example,

Oct 2022

https://doodlelabstechsupport.zohodesk.com/portal/en/kb/doodle-labs
https://openwrt.org/docs/techref/ubus
https://stedolan.github.io/jq/
https://openwrt.org/docs/guide-developer/procd-init-script-example

