

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 1

Application Note

Low Latency C&C and Video Streaming with the
Nvidia Jetson Nano

Introduction
This document is a basic tutorial for how to get started with the Doodle Labs Smart Radio and

the Nvidia Jetson Nano in a video streaming application. Additionally, we demonstrate how the

Smart Radio con be configured to optimize a Command and Control while streaming video at

the same time. The Nvidia Jetson Nano is a popular System-on-Module (SOM) used for

emerging IoT applications such as drones, robots, and generally devices which can make use of

its powerful AI capabilities. It includes a GPU which can perform fast H.264/H.265 video

encoding and decoding making it ideal for low latency video streaming. This tutorial is divided

into the following sections:

1. Video System Block Diagram

2. Hardware Setup

3. First Time Jetson Nano Setup

4. Smart Radio Configuration

5. Preparing GStreamer

6. Video streaming and Command and Control

7. Advanced Video Streaming

This tutorial makes use of the gstreamer command-line tools, gst-launch-1.0 and gst-

inspect-1.0. Building a C-application is beyond the scope of the tutorial.

The latency added by the Smart Radio network is less than 10ms for both concurrent HD

video and the C&C data.

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 2

Application Note

Video System Block Diagram

Fig. 1 – Video Data Flow

The block diagram above illustrates the data flow path of a simple streaming application. The

cloud of Smart Radios represents a mesh situation where the video feed may hop across a node

before arriving at the destination Smart Radio. For a discussion of the different blocks , please

see the document, “Smart Radio Video Streaming Tutorial”.

Hardware Setup
This tutorial makes use of the Nvidia Jetson Nano Developer Kit which has standard interfaces

like USB, HDMI etc. Basic hardware setup for streaming is shown below.

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 3

Application Note

Fig. 2 – Basic Hardware Setup

Power

The Jetson Nano can be powered over the standard USB Micro device port (J28) or the barrel

connector (J25). Use a 5-V supply with at least a 2-A current rating. The camera is powered over

the MIPI CSI2 or USB interface. Follow the datasheet of your particular Smart Radio model

when choosing a power supply.

Camera Setup

You may use the MIPI CSI2 interface, or a USB interface. USB 2.0 has a maximum link speed of

480 Mbps which is unsuitable for raw 1080p30 video, which means that you will either need a

USB 3 interface, or you will need to transcode from MJPEG to H.264. Transconding MJPEG to

H264 adds about 100ms to the latency in our tests. The MIPI CSI2 interface is only suitable for

short connections, and ideally it should be shielded against EMI. Note that the HDMI port on

Nano is an output port, so you cannot connect an HDMI camera to it.

A global shutter is preferred since a rolling shutter produces a wavy effect when the UAV is

moving. Additionally, some cameras have some form of image stabilization (optical or

electronic), which is useful on UAVs.

We tested the control loop using the Nvidia Jetson Nano with two different cameras [1][2].

1. Raspberry Pi HQ Camera (imx477)

2. E-Con Systems See3CAM_CU135 - 4k USB3.0 Camera (AR1335)

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 4

Application Note

Smart Radio Setup

In Fig. 2, we are using the OEM Mini form-factor of the Smart Radio on the UAV side, and the

Wearable form-factor on the GCS side. Refer to their respective integration guides for details on

the connections. Regardless of the form-factor, all Smart Radios include an Ethernet interface

which can be connected to the Jetson Nano on the UAV.

First Time Jetson Nano Setup
The first time you use the Jetson Nano, you may find it easier to get it setup using a monitor

and keyboard. Hook up your monitor to the HDMI port, and keyboard/mouse to the USB ports.

Getting the Firmware

There are extensive guides available on the Nvidia website which detail how to prepare your

Jetson Nano. The basic steps are:

1. Download and extract the latest firmware image. In this tutorial, we used JP 4.4.

2. Format your SD card and burn the firmware image to the SD card using a program such

as Balena Etcher.

3. Inset the SD card into the Jetson Nano, and power up.

The first time you boot up the Jetson Nano, you will be asked to setup a username and

password, and these will be required for SSH or Serial access later.

By default, the Jetson Nano is setup as a DHCP client. Therefore, you can connect it to your

office router so that it can get an IP address and access the internet. Once you have connected

to the internet, run

$ sudo apt update

$ sudo apt upgrade

This will make sure that your package lists and packages are up to date. After that make sure

that your Jetson clock is synchronized. This is necessary to access secure websites.

$ timedatectl

 Local time: Tue 2020-05-05 16:23:05 +08

 Universal time: Tue 2020-05-05 08:23:05 UTC

 RTC time: Tue 2020-05-05 08:23:06

 Time zone: Asia/Singapore (+08, +0800)

 System clock synchronized: yes

systemd-timesyncd.service active: yes

 RTC in local TZ: no

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 5

Application Note

After the initial setup is complete, connect the Jetson Nano to the Smart Radio as shown in the

hardware diagram.

Smart Radio Configuration
In this section, we describe simple steps to setup the Smart Radio for video streaming. If you

are not sure how to make any of these configuration settings, then please consult the Smart

Radio Configuration Guide.

IP Configuration

The main requirement for the IP configuration is that all nodes in the network are on the same

subnet and can therefore reach one another directly. You may choose to enable a DHCP server

on the network, or just use static IP addresses.

The Jetson Nano is pre-configured as a DHCP client. However, by default, the Smart Radio does

not have the DHCP server enabled.

Enabling a DHCP Server

The DHCP server should be enabled on the WAN interface, and the default DHCP client should

be disabled at the same time.

1. In the GUI, navigate to Network → Interfaces and EDIT the WAN interface.

2. Change the protocol from DHCP Client to Static Address and click Switch Protcol

3. We need to choose an IP address and Netmask for this node. In the screenshot below,

we used 192.168.100.1 as the static IP address and 255.255.255.0 as the netmask.

4. Scroll to the bottom and under the DHCP Server section, deselect ignore

interface. The default settings are ok, so just click Save & Apply. At this point you

should make sure all nodes on the network are setup as DHCP clients. This is true by

default for the Smart Radio which are DHCP clients, but also have a fixed IP address.

https://doodlelabs.com/technologies/technical-library/
https://doodlelabs.com/technologies/technical-library/

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 6

Application Note

Fig. 3 – DHCP Configuration

All nodes in the network should now have an IP address in the 192.168.100.0/24 subnet. You

can find the IP addresses of all nodes on the network by logging into the Smart Radio over SSH

and using the address resolution protocol. You can identify connected devices by their

hardware address.

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 7

Application Note

root@smartradio-301a4ebb02:~# arp

IP address HW type Flags HW address Mask Device

192.168.100.210 0x1 0x2 b0:25:aa:2d:d3:8e * br-wan

192.168.100.185 0x1 0x2 00:30:1a:4e:aa:01 * br-wan

192.168.100.193 0x1 0x2 00:30:1a:4e:aa:09 * br-wan

Note that the above steps apply for both WDS AP/Client and Mesh modes.

Traffic Prioritization

Figure 4 shows the configuration menu for Differentiated Services. This page can be found by

navigating to network → Traffic Prioritization in the web GUI. Traffic optimization

works by filtering packets based on their network port, IP address or transport layer protocol

and placing them in one of four different queues – best effort, command/control and voice,

video, and background. Doodle Labs Smart Radios include additional optimizations for video

and command/control data which can be enabled by checking the relevant radio buttons in the

Traffic Prioritization configuration menu.

The video bad link threshold is an additional failsafe where the video stream is guaranteed to

be dropped if the signal strength is lower than the defined threshold. The default numbers

make it disabled.

You may also enable Diversity Rates Only which limits the radio’s modulation rate to slower but

more robust rates. This is recommended for highly dynamically changing channel conditions or

UAV movement.

Lastly, make sure to create a rule for your RC/telemetry connection like the ones already

defined. By default, port 14550 (MAVLink) is sent to the command and control queue. You do

not need to create a rule for your video stream.

After making your changes, click Save & Apply.

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 8

Application Note

Fig. 4 – Differentiated Services Configuration Menu

Preparing GStreamer
GStreamer is a framework for creating multimedia streaming applications and is available in

multiple platforms including Windows, iOS, Android, and Linux [3]. GStreamer is installed in the

Jetson Nano by default and you can write simple pipelines to steam video without any

additional setup. This guide focuses on using RTSP streaming, which is commonly used for real-

time streaming applications.

In order to stream using RTSP, you either need to write your own application, or use gst-rtsp-

server [4]. gst-rtsp-server requires the gtk-doc-tools package to be installed.

$ sudo apt install gtk-doc-tools

In order to use gst-rtsp-server, you need to clone the repository, checkout the version of

gst-rtsp-server suitable for your GStreamer version, and the build the application. Start by

creating a working directory.

$ mkdir workingDir

$ cd workingDir

$ git clone https://github.com/GStreamer/gst-rtsp-server.git

https://github.com/GStreamer/gst-rtsp-server.git

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 9

Application Note

$ cd gst-rtsp-server

$ gst-launch-1.0 –version

GStreamer 1.14.5

https://launchpad.net/distros/ubuntu/+source/gstreamer1.0

The version of GStreamer we have is 1.14.5, so checkout the corresponding git branch.

$ git checkout 1.14.5

$./autogen.sh

$./configure.sh

$ make

$ sudo make install

gst-rtsp-server is now ready to be used.

Video Streaming and Command and Control
Before starting a video stream, first get the information on your video camera’s capabilities.

You can list the cameras attached to the Jetson Nano and check their capabilities using v4l2-

ctl.

$ v4l2-ctl --list-devices

vi-output, imx219 6-0010 (platform:54080000.vi:0):

 /dev/video0

$ v4l2-ctl -d /dev/video0 --list-formats-ext

ioctl: VIDIOC_ENUM_FMT

 Index : 0

 Type : Video Capture

 Pixel Format: 'RG10'

 Name : 10-bit Bayer RGRG/GBGB

 Size: Discrete 3264x2464

 Interval: Discrete 0.048s (21.000 fps)

 Size: Discrete 3264x1848

 Interval: Discrete 0.036s (28.000 fps)

 Size: Discrete 1920x1080

 Interval: Discrete 0.033s (30.000 fps)

 Size: Discrete 1280x720

 Interval: Discrete 0.017s (60.000 fps)

 Size: Discrete 1280x720

 Interval: Discrete 0.017s (60.000 fps)

In our case, we have one camera which is attached and it is exposed to the user as

/dev/video0. Our tests will be conducted using 1920x1080 at 30 fps. Fast encoding at H.264

can be accomplished using the omxh264enc plugin. You can see details and options of the

omxh264enc plugin using

$ gst-inspect-1.0 omxh264enc

https://launchpad.net/distros/ubuntu/+source/gstreamer1.0

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 10

Application Note

The output is very long and is not shown. The equivalent H.265 encoder plugin is omxh265enc.

Nvidia has an Accelerated GStreamer User Guide available online which details some of the

capabilities of the Jetson Nano when used with GStreamer.

RTP Streaming

Before diving into RTSP streaming, we can test a simple RTP video stream. In this case, the

Nvidia Jetson Nano will act as the client, and it will directly stream video packets to a known

listening server.

The RTP client can be started on the Jetson Nano using

$ gst-launch-1.0 nvarguscamerasrc ! "video/x-

raw(memory:NVMM)",width=1920,height=1080,framerate=30/1,format=NV12 !

videoconvert ! omxh264enc control-rate=constant bitrate=5000000

iframeinterval=15 ! h264parse ! rtph264pay name=pay0 pt=96 config-interval=-

1 ! udpsink host=<IP ADDRESS> port=5000 sync=false

where <IP Address> is the IP address of the receiving PC. The video feed can be picked up on

the receiving PC with

$ gst-launch-1.0 -v udpsrc port=5000 caps='application/x-rtp,

media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264,

framerate=(fraction)30/1, width=(string) 1920, height=(string) 1080,

playload=(int)96' ! rtpjitterbuffer latency=100 ! rtph264depay ! avdec_h264 !

videoconvert ! autovideosink sync=false

All instances of h264 above also work with h265.

RTSP Streaming

RTSP streaming can be started using

$./gst-rtsp-server/examples/test-launch "nvarguscamerasrc ! video/x-

raw(memory:NVMM) width=1920 height=1080 framerate=30/1 format=NV12 !

omxh264enc control-rate=constant bitrate=5000000 iframeinterval=15!

h264parse ! rtph264pay name=pay0 pt=96 config-interval=-1"

Note that the command points to the gst-rtsp-server directory which was cloned earlier.

The stream can be picked up on the receiving PC using

$ gst-launch-1.0 -v rtspsrc buffer-mode=0 do-retransmissions=0 drop-on-

latency=1 latency=100 location=rtsp://<IP Address>:8554/test ! application/x-

rtp, payload=96 ! rtph264depay ! avdec_h264 ! videoconvert ! autovideosink

sync=false

https://developer.download.nvidia.com/embedded/L4T/r24_Release_v2.1/Docs/Accelerated_GStreamer_User_Guide_Release_24.2.1.pdf?p_1sAkSNVSDNENwYYtRBpPYO6z1XxwuEeLdihYPfF0sUwiuvt3HCFQ_9iTMUVODflwxG5VFBSmcPPdp---4h9NnFbIID6Nxu0XkjZakXcuyOerb9bWsAP_eq7M4u-qeB7ekBFql6OiDCD5KaH-Xy1_9FJrIuZCWfMp4jkT5lDsXXNyH1zpfTEiQpbHYtH0wKyNLP3GM

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 11

Application Note

where <IP Address> is the IP address of the Jetson Nano. All instances of h264 above also

work with h265. In the command above we use UDP as the transport protocol. To use TCP, the

“location=rtsp://” part should be changed to “location=rtspt://”.

QGroundcontrol

Important Note: It is not possible to change the RTSP client settings in QGroundControl, and

we have found that many of the default settings are not suitable for real-time video

streaming. If you are using QGroundControl and are experiencing video issues, then we

recommend avoiding RTSP, and using the simple RTP streaming discussed in the section

above.

The RTSP stream can be picked up using QGroundcontrol with either H.264 or H.265 encoding.

Figure 5 shows the relevant settings, and Fig. 6 shows a screenshot of the video feed with

2Mbps H.265 encoding. Note that QGroundcontrol does not support RTSP over TCP by default.

Fig. 5 – QGroundcontrol RTSP settings

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 12

Application Note

Fig – 6 RTSP Stream in QGC 2Mbps H.265 Encoding

Results

With the above settings, we measured the glass-to-glass latency while running hping3 at the

same time. hping3 is a Linux command-line utility which can be used to measure UDP latency

(among other things). You can install and run hping3 by running

$ sudo apt install hping3

$ sudo hping3 --data 500 --destport 14550 10.223.0.2

HPING 10.223.0.2 (enp4s0 10.223.0.1): NO FLAGS are set, 40 headers + 500 data

bytes

len=40 ip=10.223.0.2 ttl=64 DF id=43729 sport=14550 flags=RA seq=0 win=0

rtt=3.8 ms

With the above settings, the glass-to-glass latency was typically 110ms with only about 10ms

for the transport through the Smart Radios. The difference between TCP and UDP was around 3

ms. Figure 7 shows the results.

Note that Doodle Labs Mesh Rider uses special radio and parameters to optimize the video

transmission over wireless medium in high interference areas. For video transmission within

Smart Radio private network, we recommend use of TCP. We can see that the latency added

by the Smart Radio network amounted to less than around 10ms.

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 13

Application Note

Fig. 7 – Glass to glass latency

Advanced Video Streaming
In this section, we will cover some advanced video streaming protocols which can improve

video performance in various adverse conditions. We present some example gstreamer

pipelines as-is, but bear in mind that many of these may not be integrated into applications

such as QGroundControl.

Pipeline Configuration

The RTSP pipelines which we used above can be tailored for different applications. Some of the

settings which are useful to configure in highly dynamic applications (UAVs) are discussed

below.

1. Encoder Bitrate – The encoder bitrate controls the bandwidth used to send the video.

Any wireless link has a limited network capacity, and if the bitrate exceeds this capacity,

frames will be dropped.

2. Encoder i-frame interface – The i-frame interval determines how often key interval

frames are sent. In H264/H265 encoding, image frames are compressed in image-space

and time. I-frames, however, are not compressed in time. In contrast to i-frames, p-

frames and b-frames require information from previous and future frames to be

decoded, so if an i-frame is dropped, all subsequent frames until the next i-frame could

be affected.

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 14

Application Note

a. We recommend keeping a very low i-frame interval for highly dynamic channel

conditions. This will result in a general degradation in picture quality, but fewer

frame drops.

3. Intra-refresh type – Some encoders allow you to divide i-frames into multiple sub-

frames. Rather than encoding the entire i-frame at once, the frame is split into different

regions, and the i-frame of each region is encoded at cyclically. Since i-frames are

significantly larger than p/b-frames, this has the effect of making the bit-stream more

stable which is easier on the radio link.

4. Region-of-interest – Some encoders allow you too choose a region-of-interest within the

frame. Usually is is a rectangle in the center of the frame, and it will be encoded at a

higher resolution than the rest of the frame.

Forward-Error-Correction

Forward-Error-Correction (FEC) is an encoding method whereby data is sent redundantly so

that missing or erroneous data can be recovered at the receiver. FEC is already used at the bit

level by the radio, but it can be added at either the transport or application level. Gstreamer

integrates the FEC encoder/decoder elements gstfeculpenc and gstfeculpdec [5][6].

An example RTP sending pipeline using the raspberry pi is

gst-launch-1.0 --gst-debug-level=3 rpicamsrc bitrate=2000000 exposure-

mode=sports awb-mode=1 keyframe-interval=15 rotation=180 preview=false

sensor-mode=5 ! video/x-h264,width1280,height=720,framerate=30/1 !

h264parse ! rtph264pay config-interval=-1 name=pay0 pt=96 ! rtpulpfecenc

percentage=100 pt=122 ! udpsink host=10.223.0.1 port=5000

An example RTP receiving pipeline is

gst-launch-1.0 -v udpsrc port=5000 caps='application/x-rtp,

media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264,

framerate=(fraction)30/1, width=(string)1920, height=(string)1080,

playload=(int)96' ! rtpulpfecdec pt=122 ! rtph264depay ! avdec_h264 !

videoconvert ! autovideosink sync=false

MTU Sizing

The Maximum Transmission Unit (MTU) is the largest data packet that the network will support.

Reducing the MTU size used by the video streaming application will result in smaller over-the-

air packets. A smaller packet is in the air for a shorter duration and therefore is less likely to be

corrupted. However, the MTU size also directly affects the network capacity. As each packet in

a unicast transmission needs to be acknowledged, it is less efficient to send smaller packets and

then wait for an acknowledgement.

© 2020 Doodle Labs. All rights reserved. September 30, 2022

 Page 15

Application Note

In GStreamer, you can configure the MTU in an RTSP stream using the rtph264pay element.

An example configuration would be

rtph264pay config-interval=-1 name=pay0 pt=96 mtu=250

Adaptive Bitrates

The network capacity is the throughput that the network can support at any particular time. In

a UAV scenario, the network capacity can change throughout the mission. The most obvious

case is where the UAV is flying away from the GCS, which results in a steady drop in the

network capacity over time. Using dynamically adaptive bitrates to modify the video encoder’s

bitrate based on the network capacity can result in a stable video feed even in harsh RF

environments or at long range.

References
[1] Raspberry Pi HQ Camera, https://www.raspberrypi.com/products/raspberry-pi-high-

quality-camera/, 18-8-2022

[2] E-Con Systems 4K USB Camera, https://www.e-consystems.com/4k-usb-camera.asp, 18-

8-2022

[3] Gstreamer, https://gstreamer.freedesktop.org/, 18-8-2022

[4] gst-rtsp-server, https://github.com/GStreamer/gst-rtsp-server, 18-8-2022

[5] Gstreamer gstulpfecenc,

https://gstreamer.freedesktop.org/documentation/rtp/rtpulpfecenc.html?gi-

language=c, 26-7-2022

[6] Gstreeamer gstulpfecdec,

https://gstreamer.freedesktop.org/documentation/rtp/rtpulpfecdec.html?gi-

language=c, 26-7-2022

https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/
https://www.raspberrypi.com/products/raspberry-pi-high-quality-camera/
https://www.e-consystems.com/4k-usb-camera.asp
https://gstreamer.freedesktop.org/
https://github.com/GStreamer/gst-rtsp-server
https://gstreamer.freedesktop.org/documentation/rtp/rtpulpfecenc.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/rtp/rtpulpfecenc.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/rtp/rtpulpfecdec.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/rtp/rtpulpfecdec.html?gi-language=c

